Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.099
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124175, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565051

RESUMO

Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 µM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Cobre/análise , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Íons/análise , Alimentos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124202, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565052

RESUMO

A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.


Assuntos
Colorimetria , Cobre , Cobre/análise , Cátions , Chá , Alimentos
3.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578375

RESUMO

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Assuntos
Poluentes Ambientais , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cobre/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Poluição Ambiental/análise , Solo , Poluentes Ambientais/análise , Mineração de Dados , Monitoramento Ambiental/métodos , China , Medição de Risco
4.
Sci Total Environ ; 926: 171948, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527545

RESUMO

The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.


Assuntos
Cobre , Praguicidas , Cobre/análise , Ecossistema , Agricultura/métodos , Praguicidas/análise , Nanotecnologia/métodos , Fertilizantes/análise , Solo
5.
Sci Total Environ ; 926: 171747, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531460

RESUMO

Conventional monitoring and mapping approaches are laborious, expensive, and time-consuming because they need a large number of data and consequently extensive sampling and experimental operations. Therefore, due to the growing concern about the potential of contamination of soils and agricultural products with heavy metals (HMs), a field experiment was conducted on 77 farm lands in an area of 2300 ha in the southeast of Shiraz (Iran) to investigate the source of metal contamination in the soils and vegetables and to model spatial distribution of HMs (iron, Fe; manganese, Mn; copper, Cu; zinc, Zn; cadmium, Cd; nickel, Ni, and lead, Pb) over the region using geographic information system (GIS) and geostatistical (Ordinary Kriging, OK) approaches and compare the results with deterministic approaches (Inverse Distance Weighting, IDW with different weighting power). Furthermore, some ecological and health risks indices including Pollution index (PI), Nemerow integrated pollution index (NIPI), pollution load index (PLI), degree of contamination (Cdeg), modified contamination degree (mCd), PIaverage and PIvector for soil quality, multi-element contamination (MEC), the probability of toxicity (MERMQ), the potential ecological index (RI), total hazard index (THI) and total carcinogenic risk index (TCR) based on ingestion, inhalation, and dermal exposure pathways for adults and children respectively for analyzing the noncarcinogenic and carcinogenic risks were calculated. Experimental semivariogram of the mentioned HMs were calculated and theoretical models (i.e., exponential, spherical, Gaussian, and linear models) were fitted in order to model their spatial structures and to investigate the most representative models. Moreover, principal component analysis (PCA) and cluster analysis (CA) were used to identify sources of HMs in the soils. Results showed that IDW method was more efficient than the OK approach to estimate the properties and HMs contents in the soils and plants. The estimated daily intake of metals (DIM) values of Pb and Ni exceeded their safe limits. In addition, Cd was the main element responsible for ecological risk. The PIave and PIvector indices showed that soil quality in the study area is not suitable. According to mCd values, the soils classified as ultra-high contaminated for Cu and Cd, extremely high for Zn and Pb, very high, high, and very low degree of contamination for Ni, Mn, and Fe, respectively. 36, 60, and 4 % of the sampling sites had high, medium, and low risk levels with 49, 21, and 9 % probability of toxicity, respectively. The maximum health risk index (HRI) value of 20.42 with extremely high risk for children was obtained for Ni and the HI for adults and children were 0.22 and 1.55, respectively. The THI values of Pb and Cd were the highest compared to the other HMs studied, revealing a possible non-cancer risk in children associated with exposure to these metals. The routes of exposure with the greatest influence on the THI and TCR indices were in the order of ingestion > inhalation > dermal. Therefore, ingestion, as the main route of exposure, is the route of greatest contribution to health risks. PCA analysis revealed that Fe, Mn, Cu, and Ni may originate from natural sources, while Fe was appeared to be controlled by fertilizer, and Cu primarily coming from pesticide, while Cd and Pb were mainly associated with the anthropogenic contamination, atmospheric depositions, and terrific in the urban soils. While, Zn mainly originated from fertilization. Findings are vital for developing remediation approaches for controlling the contaminants distribution as well as for monitoring and mapping the quality and health of soil resources.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Verduras , Sistemas de Informação Geográfica , Monitoramento Ambiental , Cádmio/análise , Cobre/análise , Chumbo/análise , Medição de Risco , Metais Pesados/análise , Solo/química , Carcinógenos/análise , Receptores de Antígenos de Linfócitos T , Poluentes do Solo/análise , China
6.
Chemosphere ; 355: 141745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521100

RESUMO

The application of carbon nanoparticles (CNPs) and biochar in agriculture for improving plant health and soil quality and alleviating metal stress offers alternative approaches to meet the ever-increasing demand for food. However, poor understanding of their roles in improving crop production under Cu stress represents a significant obstacle to their wide application in agriculture. To clarify how CNPs and biochar affect corn (Zea mays L.) seed germination, seedling growth, plant health, and nutrient uptake under different Cu stress levels, soil-less Petri-dish and greenhouse soil-based bioassays were conducted. The results revealed that CNPs and biochar stimulated corn seed germination and seedling growth. Besides, they were effective in immobilizing Cu2+ sorption in sandy soil and alleviating Cu stress for plant growth, as shown by the increased plant height and dry biomass. The plant nutrient uptake efficiency (NUE) was significantly increased by CNPs, with a maximum increase of 63.1% for N and 63.3% for K at the highest Cu2+ stress level (400 mg Cu2+ L-1). In contrast, non-significant effects on NUE were observed with biochar treatments regardless of Cu stress levels. Interestingly, CNPs significantly increased plant uptake of Cu in the Petri dish test, while biochar inhibited plant uptake of Cu under both experimental conditions. Principle component analysis (PCA) and Pearson correlation analysis indicated that CNPs mitigated Cu stress mainly by elevating antioxidant enzyme activities, enhancing plant photochemical efficiency, and increasing plant uptake of N and K, while biochar was more likely to reduce bioavailability and uptake of Cu in the plant. These findings have great implications for the application of CNPs and biochar as plant growth stimulators and de-toxicity agents in agriculture.


Assuntos
Nanopartículas , Poluentes do Solo , Cobre/farmacologia , Cobre/análise , Zea mays , Carvão Vegetal/farmacologia , Solo , Plântula , Sementes , Poluentes do Solo/análise
7.
Chemosphere ; 355: 141803, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554867

RESUMO

Swine farming produces large quantities of nutrient-rich wastewater, which often contains metals such as Cu and Zn, used as feed additives for pigs. These metals must be removed from the wastewater before discharge but their retention in the biomass can limit its subsequent utilization. Photobioreactors are a very promising alternative for swine wastewater treatment, as the consortium of microalgae and bacteria growing symbiotically in these reactors allows high nutrient and metal removal efficiency at moderate costs. This work studies the mechanisms of removal of Cu(II) and Zn(II) by the two types of microorganisms growing in these photobioreactors. A microalga commonly used in wastewater treatment (Scenedesmus almeriensis) and an activated sludge were kept in contact with synthetic wastewater containing 100 mg/L of Cu and Zn. After 72 h, Scenedesmus almeriensis removed 43% of Cu and 45% of Zn, while activated sludge removed 78% of Cu and 96% of Zn. Single and sequential extractions of the biomasses using different extracting reagents revealed that biosorption on protonable groups is the dominant removal mechanisms. Mild reagents solubilized 69% of Cu and 94% of Zn from the microalgae and 76% of Cu and 93% of Zn from the activated sludge. Low metal concentrations in the oxidizable and residual fractions evidenced minimal bioaccumulation inside the cells. FTIR and ESEM-EDX analysis confirmed biosorption by ion exchange and complexation as the main metal remediation mechanisms. The weak bonds of the biosorbed Cu and Zn ions are beneficial for the valorization of biomass and the obtaining of safe bioproducts.


Assuntos
Metais Pesados , Microalgas , Animais , Suínos , Cobre/análise , Zinco/análise , Águas Residuárias , Esgotos/química , Metais , Bactérias , Nutrientes/análise , Biomassa , Metais Pesados/análise
8.
Chemosphere ; 355: 141861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556180

RESUMO

While zinc protects plants from copper in hydroponics, its behavior in soil remains unclear. We investigated the potential of zinc sulfate to protect ryegrass from copper toxicity in contaminated soil. Twelve soil treatments combined varying levels of copper oxide (CuO) and zinc sulfate (ZnSO4). Increasing CuO significantly stunted ryegrass, but adding ZnSO4 mitigated the effects at each CuO level. ZnSO4 had no effect in unpolluted conditions. These results, supported by the Terrestrial Biotic Ligand Model, indicate that zinc competes with copper for binding sites, reducing copper uptake by ryegrass and mitigating its toxicity. Application of zinc sulfate to copper-contaminated soils appears promising for ryegrass growth, although field studies are critical to confirm real-world efficacy.


Assuntos
Lolium , Poluentes do Solo , Cobre/análise , Zinco/química , Sulfato de Zinco/metabolismo , Solo , Poluição Ambiental , Poluentes do Solo/análise
9.
Environ Sci Technol ; 58(12): 5606-5615, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470122

RESUMO

Gaps in the United States Environmental Protection Agency (US EPA) Lead and Copper Rule (LCR) leave some consumers and their pets vulnerable to high cuprosolvency in drinking water. This study seeks to help proactive utilities who wish to mitigate cuprosolvency problems through the addition of orthophosphate corrosion inhibitors. The minimum doses of orthophosphate necessary to achieve acceptable cuprosolvency in relatively new copper pipe were estimated as a function of alkalinity via linear regressions for the 90th, 95th, and 100th percentile copper tube segments (R2 > 0.98, n = 4). Orthophosphate was very effective at reducing cuprosolvency in the short term but, in some cases, resulted in higher long-term copper concentrations than the corresponding condition without orthophosphate. Alternatives to predicting "long-term" results for copper tubes using simpler bench tests starting with fresh Cu(OH)2 solids showed promise but would require further vetting to overcome limitations such as maintaining water chemistry and orthophosphate residuals and to ensure comparability to results using copper tube.


Assuntos
Água Potável , Poluentes Químicos da Água , Estados Unidos , Cobre/análise , Fosfatos , Abastecimento de Água , Corrosão
10.
Sci Total Environ ; 924: 171700, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490408

RESUMO

The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Cobre/toxicidade , Cobre/análise , Cádmio , Solo , Bioacumulação , Chumbo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise
11.
Sci Rep ; 14(1): 6548, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503859

RESUMO

Trace metals are naturally occurring metals found in very small concentrations in the environment. In the context of fish flesh, metals such as copper, calcium, potassium, sodium, zinc, iron, and manganese are absorbed by fish and play vital roles in various physiological functions. However, if these metals exceed the recommended limits set by WHO/FAO, they are termed 'toxic metals' due to their harmful impacts on both the fish and its consumers. Therefore, the present study aims to analyze the levels of protein, lipids, and certain metals-Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Iron (Fe), Copper (Cu), Potassium (K), and Calcium (Ca) in three commercially important marine fishes i.e. Rastrelliger kanagurta, Sardinella abella, and Otolithes ruber. The study also aims to assess their potential impact on human health. The macro-Kjeldhal method and Soxhlet apparatus were used to estimate protein and lipid contents, while atomic absorption spectroscopy (AAS) was used to estimate trace metals found in fishes. The study found that these fish species are valuable sources of protein, lipids, and certain essential minerals. The protein content (CP) in these three species ranged from 63.35 to 86.57%, while lipid content was from 21.05 to 23.86%. The overall results of the trace metal concentrations analyzed in the present study revealed that Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Copper (Cu), Potassium (K), and Calcium (Ca) were found in low concentration or traces and also within suitable ranges as set by WHO/FAO. However, Iron (Fe) was absent in all three species. Moreover, both copper and potassium were found in all three species, while Zinc was present in Rastrelliger kanagurta and Sardinella abella, calcium in Sardinella abella, and sodium in Otolithes ruber only. Titanium was recorded for the first time in S. abella. However, the total health risk assessment associated with these fish food consumption was measured by THQ and TTHQ and found to be less than 1, which shows no potential risk related to trace metals found in these fishes on human health upon their consumption. In conclusion, these commercially important marine fish species were found valuable sources of protein, lipids, and essential trace minerals that are necessary for human health. Thus, the current study provides useful information for the local population to make informed decisions about their daily diets and highlights the importance of sustainable fishing practices to maintain these valuable marine resources by periodical monitoring of their ecosystem.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Humanos , Animais , Oligoelementos/análise , Cobre/análise , Metais Pesados/análise , Alumínio/análise , Cálcio/análise , Titânio/análise , Ecossistema , Monitoramento Ambiental , Zinco/análise , Ferro/análise , Medição de Risco , Sódio/análise , Potássio/análise , Lipídeos , Peixes/metabolismo , Poluentes Químicos da Água/análise
12.
Sci Rep ; 14(1): 5743, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459117

RESUMO

There is an increasing concern about the health effects of exposure to a mixture of pollutants. This study aimed to evaluate the associations between serum levels of heavy/essential metals ([Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Iron (Fe), and Zinc (Zn)]) and the risk of developing cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2D). Data were collected from 450 participants (150 with CVDs, 150 with T2D, and 150 healthy subjects) randomly selected from the Ravansar Non-Communicable Disease (RaNCD) cohort in Western Iran, covering the years 2018-2023. Trace element levels in the serum samples were assayed using ICP-MS. Logistic regression was performed to estimate the adjusted risk of exposure to single and multi-metals and CVD/T2D. Odds ratios were adjusted for age, sex, education, residential areas, hypertension, and BMI. The mixture effect of exposure to multi-metals and CVD/T2D was obtained using Quantile G-computation (QGC). In the logistic regression model, chromium, nickel, and zinc levels were associated with CVD, and significant trends were observed for these chemical quartiles (P < 0.001). Arsenic, chromium, and copper levels were also associated with T2D. The weight quartile sum (WQS) index was significantly associated with both CVD (OR 4.17, 95% CI 2.16-7.69) and T2D (OR 11.96, 95% CI 5.65-18.26). Cd, Pb, and Ni were the most heavily weighed chemicals in these models.The Cd had the highest weight among the metals in the CVD model (weighted at 0.78), followed by Hg weighted at 0.197. For T2D, the serum Pb (weighted at 0.32), Ni (weighted at 0.19), Cr (weighted at 0.17), and Cd (weighted at 0.14) were the most weighted in the G-computation model. The results showed the significant role of toxic and essential elements in CVDs and T2D risk. This association may be driven primarily by cadmium and mercury for CVDs and Pb, Ni, Cr, and Cd for T2D, respectively. Prospective studies with higher sample sizes are necessary to confirm or refute our preliminary results as well as to determine other important elements.


Assuntos
Arsênio , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Mercúrio , Metais Pesados , Oligoelementos , Adulto , Humanos , Oligoelementos/análise , Cádmio/análise , Cobre/análise , Arsênio/análise , Níquel/análise , Diabetes Mellitus Tipo 2/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Chumbo , Estudos Prospectivos , Metais Pesados/análise , Zinco , Mercúrio/análise , Cromo
13.
Sci Rep ; 14(1): 5662, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454098

RESUMO

The monitoring of essential and toxic elements in patients with Opioid Use Disorder (OUD) undergoing methadone treatment (MT) is important, and there is limited previous research on the urinary levels of these elements in MT patients. Therefore, the present study aimed to analyze certain elements in the context of methadone treatment compared to a healthy group. In this study, patients with opioid use disorder undergoing MT (n = 67) were compared with a healthy group of companions (n = 62) in terms of urinary concentrations of some essential elements (selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca)) and toxic elements (lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr)). Urine samples were prepared using the acid digestion method with a mixture of nitric acid and perchloric acid and assessed using the ICP-MS method. Our results showed that the two groups had no significant differences in terms of gender, education level, occupation, and smoking status. Urinary concentrations of Se, Cu, and Fe levels were significantly lower in the MT group compared to the healthy subjects. However, the concentrations of Pb, Cd, As, Mn, Cr, and Ca in the MT group were higher than in the healthy group (p < 0.05). No significant difference was established between the levels of Zn in the two groups (p = 0.232). The results of regression analysis revealed that the differences between the concentration levels of all metals (except Zn) between two groups were still remained significant after adjusting for all variables (p < 0.05). The data obtained in the current study showed lower urinary concentrations of some essential elements and higher levels of some toxic elements in the MT group compared to the healthy subjects. These findings should be incorporated into harm-reduction interventions.


Assuntos
Arsênio , Transtornos Relacionados ao Uso de Opioides , Selênio , Oligoelementos , Humanos , Oligoelementos/análise , Cádmio/análise , Irã (Geográfico) , Chumbo/análise , Cobre/análise , Zinco/análise , Manganês/análise , Selênio/análise , Cromo/análise , Arsênio/análise , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Metadona/uso terapêutico
14.
Environ Sci Pollut Res Int ; 31(17): 25059-25075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462565

RESUMO

A field trial was performed to carry out an enhanced phytoremediation technique for multi-metal contaminated copper tailings by Sudan grass (Sorghum Sudanese), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon), using conditioner (TH-LZ01) and straw combination into composite amendments as soil amendments, aimed to obtain the maximum of phytoremediation effect. The results showed that compared with untreated herbaceous plants, the application of conditioner and straw planted with herbaceous plants reduced the pH and conductivity and increased the organic matter and water content of the copper tailings to different degrees. With the addition of conditioner and straw, the DTPA-Cd, DTPA-Cu, DTPA-Pb, and DTPA-Zn contents in the copper tailings showed a decreasing trend compared with the untreated group. The herbaceous plants were promoted to reduce the percentage contents of acid soluble fractions Cd, Cu, Pb, and Zn and to increase the percentage contents of reducible, oxidizable, and residual fractions heavy metals (Cd, Cu, Pb, and Zn) in the copper tailings to different degrees. The contents of Cd, Cu, Pb, and Zn in the underground part of herbaceous plants were higher than those in the aboveground part, and the contents of Cd, Cu, Pb, and Zn in the aboveground part and underground part decreased after adding conditioner and straw, which indicated that the conditioner and straw inhibited the transport of heavy metals in the plant. Furthermore, the principal component analysis showed that the application of conditioner and straw with planting ryegrass had more potential for improving the physicochemical properties of copper tailings and reducing heavy metal toxicity, followed by Bermuda grass and Sudan grass.


Assuntos
Metais Pesados , Poluentes do Solo , Cobre/análise , Biodegradação Ambiental , Cádmio/análise , Lagoas , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Plantas , China , Solo/química , Ácido Pentético
15.
Talanta ; 273: 125931, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518716

RESUMO

Tyrosinase (TYR) is an essential oxidase that is responsible for the regulation of multiple physiological processes and diseases. Achieving the trace and reliable detection of TYR in complex biological samples is of great significance for the diagnosis of TYR-related diseases, but which faces a great challenge. In this study, we developed an ingenious and powerful method for the ultrasensitive detection of TYR by click reaction-combined dark-field microscopy. This method begins with the formation of cuprous ions (Cu+) based on the reduction of copper ions (Cu2+) by ascorbic acid (AA). Subsequently, the formed Cu+ can catalyze the crosslinking between azide- and alkyne-functionalized gold nanoparticles, causing a significant red-shift in the scattering spectrum. However, AA can chelate with TYR, which inhibits the generation of Cu+ and subsequent click reaction, thus achieving TYR-controlled scattering spectral shift. The proposed sensing platform shows a good linear detection range of 0.01-0.8 U/L with a low detection limit of 0.003 U/L, which is three orders of magnitude lower than the best performance of TYR sensing probes reported to date. Most importantly, the strategy has the ability to reliably and accurately detect TYR in serum sample, suggesting its potential clinical application in diagnosing TYR-related diseases. This visual sensing platform offers promising prospects for future research in enzymatic analysis and biomedical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Monofenol Mono-Oxigenase , Cobre/análise , Ouro , Técnicas Biossensoriais/métodos , Ácido Ascórbico , Íons , Química Click/métodos
16.
Mar Pollut Bull ; 201: 116281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520998

RESUMO

Anthropogenic activities have increased the discharge of marine contaminants threatening marine life. Small gulfs, such as the Arabian Gulf, are vulnerable to accumulating potentially toxic elements in marine species due to slow water exchange. The concentration of 21 elements was determined in the tissues of Scomberomorus commerson from Umm Al Quwain (United Arab Emirates) and Bandar Abbas (Iran). Chromium, Copper, and Iron exceeded internationally established maximum permissible limits. Sites could not be distinguished based on Principle Component Analyses of elements. Elevated Cu and Cr in muscle are of concern to marine species as well as humans. Metal Pollution Index showed a significant difference between sites, with 20.34 % and 100 % of individuals suffering high metal toxicity and poor body conditions, respectively. The Arabian Gulf is experiencing an increase in discharge of industrial wastes. Implementation of strict policies to reduce discharge of toxic substances is required to protect marine organisms and humans.


Assuntos
Metais Pesados , Perciformes , Poluentes Químicos da Água , Humanos , Animais , Metais Pesados/análise , Peixes , Cobre/análise , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
17.
J Environ Manage ; 356: 120583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531132

RESUMO

Stormwater Control Measures (SCMs) contribute to reducing micropollutant emissions from separate sewer systems. SCM planning and design are often performed by looking at the hydrological performance. Assessment of pollutant removal and the ability to comply with discharge concentration limits is often simplified due to a lack of data and limited monitoring resources. This study analyses the impact of using different time resolutions of input stormwater concentrations when assessing the compliance of SCMs against water quality standards. The behaviour of three indicator micropollutants (MP - Copper, Diuron, Benzo[a]pyrene) was assessed in four SCM archetypes, which were defined to represent typical SCM removal processes. High resolution MP data were extrapolated by using high resolution (2 min) measurements of TSS over a long period (343 events). The compliance assessment showed that high resolution input concentrations can result in a different level of compliance with water quality standards, especially when discharged concentrations are close to the limit values. This study underlines the importance of considering the high temporal variability of stormwater micropollutants when planning and designing SCMs to identify the most effective solutions for stormwater pollution management and to ensure a thorough consideration of all the environmental implications.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Baías , Cobre/análise , Qualidade da Água , Chuva , Poluentes Químicos da Água/análise , Movimentos da Água
18.
Chemosphere ; 353: 141534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403123

RESUMO

This study assessed the phytotoxicity of a mixture of five different trace elements (TEs) frequently found as pollutants in soils: arsenic, cadmium, copper, lead and zinc. On the other hand, the plant response to a magnetite (Fe3O4) nanoparticle amendment on this mixture as well as nanomagnetite remediation potential has been tested. Sunflower (Helianthus annuus) plants were grown for 90 days in soil contaminated with the five mentioned TEs at the limit levels of TEs in soils likely to receive sludge established by French legislation. Depending on the conditions, experimental set-ups were amended or not with 1% dry weight nanomagnetite (NPsMagn), citric acid-coated nanomagnetite (NPsMagn@CA) or micro-sized magnetite (µPs) in order to assess the behavior of nanomagnetites in a TEs-contaminated water-soil-plant system under repeated water-deficiency stress. The mixture of TEs did not induce phytotoxicity as estimated by plant growth, pigment content, maximum quantum yield of photosynthesis, oxidative impact and antioxidant response. Furthermore, both nanomagnetites treatments in a TEs-contaminated soil significantly increased biomass production by 64 % compared to control and antioxidant enzyme activities compared to control and TEs-treated plants. NPsMagn and NPsMagn@CA particularly enhance phytoextraction of Cd and Cu, increasing the amounts of TEs in aerial parts from 1.5 to 4.5 times compared to set-ups without nanomagnetites. Based on Cd, Cu, Pb and Zn contents in soil solutions, both nanomagnetites treatments improved TEs phytoextraction without increasing groundwater contamination. On the contrary, nanomagnetites significantly reduce arsenic uptake by plants and solubilization in dissolved phase. Our results show that modifying surface physicochemical properties of NPsMagn with citric acid coating does not improve their effects compared to bare NPsMagn. NPsMagn and NPsMagn@CA also appear to mitigate the effects of drought stress. This work highlights several positive environmental aspects related to the use of nanomagnetites in phytoremediation.


Assuntos
Arsênio , Helianthus , Poluentes do Solo , Oligoelementos , Cobre/análise , Cádmio/análise , Arsênio/farmacologia , Antioxidantes/farmacologia , Óxido Ferroso-Férrico , Poluentes do Solo/análise , Oligoelementos/análise , Biodegradação Ambiental , Solo/química , Ácido Cítrico/farmacologia , Água/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
19.
Sci Total Environ ; 920: 170954, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365039

RESUMO

Assessing the impact of mining activity on the availability of environmental pollutants is crucial for informing health policies in anticipation of future production scenarios of critical minerals essential for the transition to a net-zero carbon society. However, temporal and spatial monitoring is often sparse, and measurements may not extend far enough back in time. In this study, we utilize variations of chemical elements contained in tree-rings collected in local villages from an area heavily affected by copper mining in the Atacama Desert since the early 20th century to evaluate the temporal distribution of pollutants and their relationship with local drivers. By combining time-varying data on local drivers, such as copper production and the dry tailings deposit area, we show how the surge in copper production during the 1990s, fueled by trade liberalization and increased international demand, led to a significant increment in the availability of metal(loid)s related to mining activities on indigenous lands. Our findings suggest that the environmental legislation in Chile may be underestimating the environmental impact of tailing dams in neighboring populations, affecting the well-being of Indigenous Peoples from the Atacama mining hotspot region. We argue that future changes in production rates driven by international demand could have negative repercussions on the environment and local communities. Therefore, mining emissions and the management of tailing dams should be carefully considered to anticipate their potential negative effects on human and ecosystem health.


Assuntos
Cobre , Poluentes Ambientais , Humanos , Cobre/análise , Ecossistema , Poeira/análise , Monitoramento Ambiental , Meio Ambiente
20.
Chemosphere ; 352: 141502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382715

RESUMO

Soil arsenic (As) contamination associated with the demolition of smelting plants has received increasing attention. Soil As can source from different industrial processes, and also participate in soil weathering, making its speciation rather complex. This study combined the usage of chemical sequential extraction and advanced spectroscopic techniques, e.g., time of flight secondary ion mass spectrometry (ToF-SIMS), to investigate the mineralogical transformation of soil As at different processing sites from a typical copper smelting plant in China. Results showed that the stability of arsenic species decreased following the processes of storage, smelting, and flue gas treatment. Arsenic in the warehouse area was incorporated into pyrite (FeS2) as well as its secondary minerals such as jarosite (KFe3(SO4)2(OH)6). At the smelting area, a large proportion of As was adsorbed by iron oxides from smelting slags, while some As existed in stable forms like orpiment (As2S3). At the acid-making area, more than half of As was adsorbed on amorphous iron oxides, and some were adsorbed on the flue gas desulfurization gypsum. More importantly, over 86% of the As belonged to non-specifically and specifically adsorbed fractions was found to be bioaccessible, highlighting the gypsum-adsorbed As one of the most hazardous species in smelting plant soils. Our findings indicated the importance of iron oxides in As retention and suggested the potential health risk of gypsum-adsorbed As. Such detailed knowledge of As speciation and bioaccessibility is vital for the management and remediation of As-contaminated soils in smelting plants.


Assuntos
Arsênio , Compostos Férricos , Poluentes do Solo , Arsênio/análise , Cobre/análise , Sulfato de Cálcio , Ferro/química , Solo/química , Óxidos/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...